Using World Interplanetary Scintillation Systems for Space Weather Predictions

B.V. Jackson

Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA

H.-S. Yu, P.P. Hick, A. Buffington,

Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA

M. Tokumaru

Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya 464-8601, Japan

A. Gonzalez-Espararza, J. Mejia-Ambriz, O. Chang

George Mason University, Fairfax, Virginia, and NASA-Goddard Spaceflight Center, USA

D. Odstrcil

George Mason University, Fairfax, Virginia, and NASA-Goddard Spaceflight Center, USA

S. Hong, J. Kim

Korean Space Weather Center, National Radio Research Agency, 198-6, Jeju, 695-922 South Korea

B. Lee, J. Yi, J Yun

SELab, 8, Nonhyeon-ro 150-gil, Gangnam-gu, Seoul, South Korea

M.M Bisi

RAL Space, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, England (UK)

http://ips.ucsd.edu/

Introduction:

IPS Space Weather Predictions

IPS Tomographic Analyses:

ISEE, Japan; The UCSD iterative kinematic prediction technique; Used primarily with ISEE observations, Other data sets can fill in; Used in space weather prediction elsewhere including at the CCMC, the KSWC, Jeju; RAL, UK; used at NICT, Japan.

IPS tomographic analysis displays:

Combined analysis from multiple IPS data sets, 3D-MHD forward modeling.

Magnetic field component forward-modeling – Br, Bt:

Part of the model package developed at UCSD.

Interesting Developments:

Bn determination via a simple technique (under development)

CASS/UCSD CCMC 2016

Thomson Scattering Analysis (Data Fitting Model at the CCMC)

The Solar Mass Ejection Imager (SMEI) Jackson, B.V., et al., 2004, Solar Phys., 225, 177

Launch 6 January 2003 Closure 28 Sept 2011

1 gigabyte/day; total ~4 terabytes
Simultaneous images
from the three SMEI
cameras.

DATA

IPS Heliospheric Analyses ISEE (STELab)

ISEE IPS array near Mt. Fuji

ISEE IPS array systems

DATA

IPS Heliospheric Analyses ISEE (STELab)

IPS line-of-sight response

ISEE IPS array systems

Current ISEE Toyokawa IPS System

ISEE IPS array in Toyokawa (3,432 m² array now operates well – year-round operation began in 2011)

UCSD IPS Predictions

IPS line-of-sight response

Jackson, B.V., et al., 2008, Adv. in Geosciences, 21, 339-360.

Heliospheric C.A.T. analyses: example line-of-sight distribution for each sky location to form the source surface of the 3D reconstruction.

ISEE IPS

Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115.

http://ips.ucsd.edu/

Current Prediction Analyses UCSD IPS analysis

UCSD Web pages

http://ips.ucsd.edu/

Skysweep View

Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115.

UCSD IPS prediction analysis

http://ips.ucsd.edu/

Ecliptic Cut

Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115.

UCSD IPS prediction analysis

Fit to ACE and CELIAS data

Space Weather Predictions using IPS Jackson, B.V., et al., 2011, Adv. in

http://ips.ucsd.edu/

In-situ Analysis and Real-Time Prediction

Fit to ACE and

Geosciences, 30, 93-115.

UCSD IPS prediction analysis CELIAS data

More Details

Magnetic Field

(Zhao, X. P. and Hoeksema, J. T., 1995, *J. Geophys. Res.*, 100 (A1), 19.)

Source surface B, field component sample

1. Inner region: the CS\$S model calculates the magnetic field using

(Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115)

http://ips.ucsd.edu/ Earth Radial and Tangential Magnetic Field Magnetic Field Extrapolation

http://ips.ucsd.edu/

Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115.

UCSD Sample Analysis (CME 08/13/2014)

ISEE Time Series 07/25 - 08/22 2014

Space Weather Predictions using IPS IPS Prediction (KSWC)

http://www.spaceweather.go.kr/models/ips

Space Weather Predictions using IPS IPS Prediction (KSWC) http://www.spaceweather.go.kr/models/ips

IPS-Driven ENLIL

World-Wide IPS observation network

Current Dedicated IPS Radio Systems

The Pushchino Radio Observatory 70,000 m² 110 MHz array, Russia (summer 2006) Now named the "Big Scanning Array of the Lebedev Physical Institute" (BSA LPI).

The Ootacamund (Ooty), India off-axis parabolic cylinder 530 m long and 30 m wide (15,900 m²) operating at a nominal frequency of 326.5 MHz.

Other and Potential Future Dedicated IPS Systems

MEXART (Mexico)

Dedicated IPS IPS 9,600 m² 140 MHz IPS radio array near Michoacan, Mexico

KSWC (South Korea)

Dedicated IPS 700 m² 327 MHz IPS radio 32 tile array, Jeju Island

Ecliptic Plane Projection

Third Remote-Sensing Workshop 20-24 October 2015 Morelia, Mexico

http://www.sciesmex.unam.mx/static/workshop2015/talks/

CASS/UCSD CCMC 2016

Recent Morelia Remote Sensing Workshop (20-24 October 2015)

- 1) A standardized IPS format was settled upon.
- 2) All participants agreed to share their data and host websites to present their data in real time as soon as it becomes available.
- 3) At this time a new member joined the group of organizations that provide access to their IPS data set in real time from the world's largest (70,000 m²) radio array currently operating; the 110 Mhz system at Pushchino, Russia.

Standard Data Format

Standard IPS Format

Ascii – Fixed Format

AS: ftp://ftp.stelab.nagoya-u.ac.jp/pub/vlist/STEL2015.dat

MEXART Analysis (Carrington Rotation 2156.7)

MEXART Time Series 11/02 – 11/29 2014

Combined ISEE and MEXART Analysis (Carrington Rotation 2156.7)

Combined Time Series 11/02 – 11/29 2014

The IPS analyses provide a really-great 3D-MHD test-bed

(Yu, H-S., et al., et al., 2015, Solar Phys., doi: 10.1007/s11207-015-0685-0.)

(Jackson, B.V., et al., ., 2015, Space Weather, 13, 104-115 doi: 10.1088/2041-8205/803/1/L1.)

IPS-Derived 3D-MHD Model Boundaries

2014 April 18 21:00UT at 0.1AU Boundary

Updated every 6 hours at: ftp://cass185.ucsd.edu/data/IPSBD_Real_Time/ ENLIL/ascii_data

UCSD kinematic model and IPS-driven 3D-MHD models

UCSD kinematic model and IPS-driven 3D-MHD models

But what is really wanted is B_z

UCSD Archival IPS Analysis of V and D at WIND over Carrington rotation 2056 (April 27 – May 25, 2007)

I have often wondered where the Bz in-situ field comes from. The Parker spiral analysis does not indicate how a normal field (north-south) can occur, and yet the field exists and is ever-present in the heliosphere.

(Jackson, B.V., et al., 2015, ApJL, 803:L1. 1- 5, doi:10.1088/2041-8205/803/1/L1.)

Extrapolated B_n closed field component for CR 2056

About 1/50th of the static flux r^{-1.34} fall-off

CASS/UCSD CCMC 2016

I suggest that at least part of the B_n component comes from closed fields that escape from near the solar surface – perhaps through some non-static process.

Summary:

IPS Space Weather Predictions

IPS Tomography Analyses:

Making good predictions of in-situ measurements ahead of time keeps you "honest".

New Systems:

Incorporation of other systems into the analysis is now available, and helps other IPS sites standardize and edit their own data sets.

Interesting Developments:

The IPS analysis is a really-great test-bed for many different types of heliospheric scientific endeavors.